Application of molecular modeling for prediction of substrate specificity in cytochrome P450 1A2 mutants.
نویسندگان
چکیده
Molecular dynamics (MD) simulations of 7-ethoxy- and 7-methoxyresorufin bound in the active site of cytochrome P450 (P450) 1A2 wild-type and various mutants were used to predict changes in substrate specificity of the mutants. A total of 26 multiple mutants representing all possible combinations of five key amino acid residues, which are different between P450 1A1 and 1A2, were examined. The resorufin substrates were docked in the active site of each enzyme in the productive binding orientation, and MD simulations were performed on the enzyme-substrate complex. Ensembles collected from MD trajectories were then scored on the basis of geometric parameters relating substrate position with respect to the activated oxoheme cofactor. The results showed a high correlation between the previous experimental data on P450 1A2 wild-type and single mutants with respect to the ratio between 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-demethylase (MROD) activities and the equivalent in silico "E/M scores" (the ratio of hits obtained with 7-ethoxyresorufin to those obtained with 7-methoxyresorufin). Moreover, this correlation served to establish linear regression models used to evaluate E/M scores of multiple P450 1A2 mutants. Seven mutants, all of them incorporating the L382V substitution, were predicted to shift specificity to that of P450 1A1. The predictions were then verified experimentally. The appropriate P450 1A2 multiple mutants were constructed by site-directed mutagenesis, expressed in Escherichia coli, and assayed for EROD and MROD activities. Of six mutants, five demonstrated an increased EROD/MROD ratio, confirming modeling predictions.
منابع مشابه
Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation
Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, ...
متن کاملSignificant increase in phenacetin oxidation on L382V substitution in human cytochrome P450 1A2.
Human CYP1A2 is an important drug-metabolizing enzyme, similar in sequence to CYP1A1 but with distinct substrate specificity. We have previously shown that residue 382 affected CYP1A1 and CYP1A2 specificities with alkoxyresorufins. To determine whether this residue is also important for the metabolism of other substrates, we have investigated phenacetin oxidation by single (T124S, T223N, V227G,...
متن کاملHuman cytochrome P450 2A13 efficiently metabolizes chemicals in air pollutants: naphthalene, styrene, and toluene.
Human P450 2A13 is the most efficient enzyme for catalyzing the metabolism of nicotine and metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). It is conceivable that P450 2A13 also metabolizes chemicals in air pollutants because this enzyme is highly expressed in the respiratory tract. In this study, we investigated the possibility that P450 2A13 can metabolize naphtha...
متن کاملPrediction of cytochrome P450 isoform responsible for metabolizing a drug molecule
BACKGROUND Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a g...
متن کاملGeneration of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3.
In recent studies, the wild-type and mutant forms of cytochrome P450 (P450) BM3 (CYP102A1) from Bacillus megaterium were found to metabolize various drugs through reactions similar to those catalyzed by human P450 enzymes. Therefore, it was suggested that CYP102A1 can be used to produce large quantities of the metabolites of human P450-catalyzed reactions. trans-Resveratrol (3,4',5-trihydroxyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 11 شماره
صفحات -
تاریخ انتشار 2008